Thursday, 21 February 2019

Algebraic identities




(1) (a + b)² = a² + 2 ab + b²
(2) (a + b)² = (a - b)² + 4 ab


(3) (a - b)² = a² - 2 ab + b²
(4) (a - b)² = (a + b)² - 4 ab


(5) a² - b² = (a + b) (a - b)

(6) (x+a) (x+b) =x² + (a + b) x+a b


(7) (a+b)³=a³+3a²b+3ab²+b³
(8) (a+b)³=a³+b³+3ab(a+b)


(9) (a-b)³=a³-3a²b+3ab²-b³
(10) (a-b)³=a³-b³-3ab(a-b)


(11)  a³+b³ = (a+b)(a²-ab+b²)
(12)  a³+b³=(a+b)³-3 ab(a + b)


(13) a³-b³= (a-b)(a²+ab+ b²)
(14) a³-b³=(a-b)³ +3ab(a-b)


(15) (a+b+c)²= a²+b²+c² +2ab+2bc+2ca
(16) (a+b-c)²=a²+b²+c² +2ab-2bc-2ca
(17) (a-b+c)²= a²+b²+c²-2ab-2bc+2ca
(18) (a-b-c)²= a²+b²+c²-2ab+2bc-2ca
(19) a² + b² = (a + b)² - 2ab
(20) a² + b² = (a - b)² + 2ab
(21) a² +  b²=½ [(a+b)²-(a-b)²]
(22) ab = ¼[(a+b)²- (a - b)²]


(23) (a + b + c)³ = a³ + b³ + c³ + 3a²b + 3a²c + 3ab² + 3b²c + 3ac² + 3bc² + 6abc
(24) (a + b - c)³ = a³ + b³ - c³ + 3a²b - 3a²c + 3ab² - 3b²c + 3ac² + 3bc² - 6abc
(25) (a - b + c)³ = a³ - b³ + c³ - 3a²b + 3a²c + 3ab² + 3b²c + 3ac² - 3bc² - 6abc
(26) (a - b - c)³ = a³ - b³ - c³ - 3a²b - 3a²c + 3ab² - 3b²c + 3ac² - 3bc² + 6abc

(27)a² + b² + c² = (a + b + c)² - 2 (ab + bc + ca)

(28)(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)

(29)(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)

(30)a4 – b4 = (a – b)(a + b)(a2 + b2)

(31)a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)

(32)if  a + b + c=0; then a3 + b3 + c3 =0

(33)a3 + b3 + c3- 3abc = (a + b+ c) (a2 + b2 + c2 - ab - ac - bc)

No comments:

Post a Comment

Introduction to algebra

The branch of mathematics which involves variables as numbers is known as  algebra . Kindle Unlimited Membership Plans Rules of A...